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1 Executive Summary

With annual returns over of €10 billion and a thriving research literature searching for biased
odds in sports betting, one might not expect to find inefficiency in the football betting market.
However, the advent of data driven approaches provides means to not only test existing hypothe-
ses but also analyse long term paradigm shifts in football markets. In this report, we provide an
in-depth analysis of inefficiencies across different segments of the UK football economy: player
contracts, gambling and odds-setting, and publicly traded financial assets. Broadly, we identify
and test hypotheses to explain arbitrage opportunities, team management errors, and options
trading anomalies. A brief overview is as follows:

e To identify bias in odds setting, we need an estimate of the ground truth - a reliable way
to identify favorites and quantify uncertainty. To do so, we create a version of the Bradley-
Terry model to determine “ELO” scores for each team’s offense and defense. We find this
strategy often beats market book makers, and provides interpretable insights into team
heterogeneity.

e To be able to identify persistence of arbitrage opportunities in the betting market, we need
to explain why different time periods allow for different levels of arbitrage. To that end, we
use a first order regime-switching Markov regression model to statistically segment the data
and identify two distinct regimes, explaining conflicting historical literature conclusions on
arbitrage availability.

e To understand market inefficiency in the sports betting market, we create synthetic book-
makers and utilize risk-weighted bet sizing methods to identify arbitrage opportunities and
potential profit. We then fit several regression models with various predictors on both the
presence and degree to which arbitrage was available, building a coherent theory of what
makes arbitrage possible.

e To understand if having an edge in predicting a match outcome can be translated into supe-
rior returns for investors, we relate the level of information entropy in the betting market
to idiosyncratic volatility of stock returns and dispel the earlier findings of statistically
significant relationship between the two.

e To confirm the hypothesis of whether option markets can be relied upon in providing a
better implied distribution of match results, we reconstruct an implied risk-neutral density
from observed option prices and find that it is likely under-pricing the right tail of the
distribution of stock returns. We suggest a simple option-based strategy that might help
investors take advantage of current market conditions.

e To understand market inefficiency in the player markets, we explore various trends in the
“value” of a player. We find that, on average, older offensive soccer players are typically
undervalued compared to younger offensive soccer players.

This led to an innovative model for team ratings that extends existing methods and outperforms
bookmakers in setting match outcome odds. We use this model - which can be explored further
in our R Shiny App (https://davidabuch.shinyapps.io/uk_football_analysis/) - to reach key
insights about betting market inefficiency:

o Greater disagreement among bookies results in both higher arbitrage likelihood and more
profitable arbitrage bets

e Arbitrage, although still somewhat available, is disappearing at unprecedented rates due
to increased public awareness and a drop in the number of bookmakers operating in the
market

e Football matches with uneven team skills tend to result in higher arbitrage likelihood

e Home team advantage disappeared in 2020-2021 season due to lack of fan attendance

We finally suggest avenues for further research in areas of player skill, bet sizing, and option
trading viability.


https://davidabuch.shinyapps.io/uk_football_analysis/

2 Technical Exposition

2.1 Offense/Defense ELO: A Novel Method for Team Quality Evalu-
ation and Match Outcome Forecasting

The outcomes of professional football matches, like those of many other sports, are understood
to derive from complex interactions of play styles, multifaceted skill profiles, and match circum-
stances [25]. In spite of this, the countless quantitative team ratings systems promulgated in the
academic and sports entertainment literature distill team ratings to a single univariate quantity
[17, [1]. Worse yet, many popular techniques cannot account for match scores or opponent qual-
ity, instead relying exclusively on ternary ‘Win-Loss-Draw’ information while at best deploying
ad hoc rules to either keep or entirely disregard data from ‘noncompetitive’ match-ups [10].

The widespread public availability of quantitative match outcome data, paired with the rapid
pace of statistical methodology development over the last 30 years renders the kludge-like nature
of the most popular sports rating systems somewhat startling. To address this gap, we have
devised a model for team rating that eschews those pitfalls by leveraging the interpretability of
the ELO system [I3], and the statistical coherency of the Bradley-Terry model [5]. However,
using modern statistical techniques it expands upon those methods to accommodate detailed
match score outcomes and enable learning of both offensive and defensive dimensions
of team skill.

We define our Offense/Defense ELO model as follows: Conditional on the expected score for
both the home and away teams in our expected match-ups, we treat the observed scores as
independent Poisson draws as suggested by discussions in Dixon and Coles, 1997 and Cain et
al., 2000 [9] [7]. We characterize a match via an ordered pair (Hy, Ay) indicating the home and
away teams that participated in match g. For ease of notation, we drop the subscript g and
assume the following model statement is iterated independently across all matches g

Yu ~ Pois(ug) Ya ~ Pois(pa)
pr =exp(ag + Oy — Dy)
na = eXp(Oq + 04 — DH)

where each team i is associated with a two-dimensional latent parameter (O;, D;) reflecting their
offensive and defensive skill, while cig and o1 are offset terms that capture the log expected num-
ber of points scored by the home and away team, respectively, in a match up of evenly skilled
teams. These offsets are assumed to be fixed for a particular league and season, though they
allowed us to replicate a collapse in home team advantage during the COVID-19 lockdowns that
had been previously documented in the literature [24].

The key insight to gain from the model equation above is that our method bears a great resem-
blance to classical Poisson regression, but has been adapted to accommodate data drawn from
networks of head-to-head comparisons. The very spare model specification above can be com-
pleted by placing priors on the team skill parameters, analogous to a random-intercept Poisson
regression. To make this explicit, for all teams ¢ we have

(04,D;) ~ N(0,%)
¥ ~ Inv-Wish(v, I)
a; ~ N(0,10),

where ¥ is the unknown covariance of the latent skill parameters. The variance of the offset
prior distributions can be specified in advance because these parameters have an easily-traced
impact on match final scores: an «q greater than 10 would imply that in an evenly matched
football game, the home team would be expected to score 22,000 points! Clearly, then, our prior



is sufficiently uninformative.

Alternatively, more insights can be drawn from the ELO model by conducting analysis condi-
tionally, assuming

0; = Xifo
D; = X;8p

where X; are team covariates, such as player salaries.

We were able to fit the ELO model via MCMC techniques despite its complex, non-conjugate
construction and large dimensionality (in the random effects case), by making use of highly effi-
cient Hamiltonian Monte Carlo techniques [19] via the user friendly open-source library Stan [22].

For a richer introduction to the potential of this model, refer to our accompanying R Shiny
App (https://davidabuch.shinyapps.io/uk _football_analysis/). Note that, for ease of interpreta-
tion, where the latent skill parameters are presented on their own, we scale them up by a factor
of 100 and describe them as “Offence-Defense ELO Scores.”

Given public appetite for team ratings/rankings information across all sports, as well as the
remunerative opportunities derived from sophisticated team evaluation and reliable match out-
come forecasting with uncertainty quantification, we see this model as possessing inherent value
to sports team managers, sports gambling bookmakers, and sports entertainment media services.
For this report, however, in keeping with our theme of identifying and quantifying instances of
inefficiency in UK football markets, we focus on just two applications of our team rating model:
football match odds-setting, and investigating the relationship between team composition and
team quality to discover biases in player valuation.

In Table [l we use the standard Ranked Probability Score measure (see Equation r is the
number of potential outcomes, p; and e; are the probability forecasts and observed outcomes
at position j) [§] to rate the odds-setting performance of our model against the published book
odds of eleven popular bookmakers, and see that our model dominates the group. Though it is
important to consider that book makers account for factors beyond match outcome probability,
this justifies our use of our models odds as a ground truth in analyzing arbitrage and biases in
the sequel.

1 r—1 1
RPS = R Z(Pj ) (2.1)
i=1 \j=1
Bookie Name RPS
Model 0.206884
SB 0.212571
BS 0.212633
vC 0.212842
B365 0.212863
LB 0.213005
WH 0.213083
SJ 0.213114
PS 0.213185
BW 0.213265
Iw 0.213440
GB 0.213459

Table 1: RPS Scores of Bookies and Novel Offense/Defense ELO Model


https://davidabuch.shinyapps.io/uk_football_analysis/
https://davidabuch.shinyapps.io/uk_football_analysis/

2.2 Time Clustering through Markov Regime Model

An analysis of prior literature on arbitrage in European sports betting markets demonstrates
that researchers come to disparate conclusions with regards to the prevalence of arbitrage. Vlas-
takis et al. find that 0.5% of all matches offer arbitrage opportunities using European soccer
match data from 2002-2004 across 6 bookies [23]. Franck et al. find that almost 4% of all
matches offer arbitrage opportunities using betting odds from 10 bookies from 2004 - 2011 [I1].
Grant et al. find arbitrage available in 25.6% of matches from six major European soccer leagues
across six bookies from 2011 - 2013 [14]. Arbitrage availability post-2013 has not been addressed
in popular literature.

Clearly, the availability of arbitrage in European soccer matches is inconsistent across time. In
order to address this in our analysis, we utilize a Markov regime switching regression model
using arbitrage availability as a dependent variable to identify separate regimes, clustering time
periods according to arbitrage behavior. This results in two separate regimes: periods of “low
availability” of arbitrage, and periods of “high availability” of arbitrage. Table [2| and Figure
show the results of this model.

Regime 1 coef  std err z P> |z| [0.025 0.975]
const 0.0081 0.004 2.237  0.025 0.001 0.015
Regime 2 coef std err z P> |z| [0.025 0.975]
const 0.0855 0.005 18.225  0.000 0.076 0.095
Non-Switching Params coef std err Z P> |z| [0.025 0.975]
sigma2 0.0001 4.66e-05 2.828  0.005 4.05e-05  0.000
Switching coef std err z P> |z| [0.025 0.975]
p[0->0] 0.9181 0.084 10.972  0.000 0.754 1.082
p[1->0] 0.2046 0.153 1.334 0.182 -0.096 0.505

Table 2: Markov Regime Switching Model Results
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Figure 1: Markov Regime Switching Model Resulting Regimes with Switching Factors

We also display the proportion of teams sponsored by gambling companies and a 4 year back-
wards rolling average number of papers published on European football arbitrage in Figure
We utilize data from Bunn et al. (2019) on U.K. football team sponsorship to determine the
proportion of teams sponsored by gambling companies [6]. Although not statistically rigorous,
it appears the second regime transition may occur as a result of increased gambling sponsor-
ship. This is additionally supported by van Huet (2017), who shows that sponsorship of Premier



League clubs by bookmakers had a major impact on arbitrage availability [16]. Since footballs
fans are more likely to place bets on their favourite team with the bookmaker who sponsors it,
individual bookmaker’s books become imbalanced and in response they decrease the odds for
the favorite no matter what they believe the true odds are, thus opening potential arbitrage
opportunity.

Further, the transition from the second regime back to the first regime may be driven by an
increase in academic literature on the topic. It is well known that increased awareness and
exploitation of arbitrage generally decreases arbitrage availability, so when treating academic
literature as a proxy for public knowledge, it follows that increased academic publications on
European football arbitrage may reduce arbitrage availability.

For the purpose of our analysis, we separate the first and second instance of the “low availability”
regime into two separate regimes to provide additional perspective into recent arbitrage activity
in betting markets. Hence, we define the period from the beginning of the 2005/2006 season to
the end of the 2012/2013 season “Regime 1,” the period from the beginning of the 2013/2014
season to the end of the 2018/2019 season “Regime 2”, and the period from the beginning of
the 2019/2020 season onward “Regime 3.”

2.3 Arbitrage Opportunity Behavior Across Regimes

To identify the presence and degree of arbitrage availability in our data, we begin by creating a
synthetic bookie using the maximum available odds across all 11 bookies. This synthetic bookie
is representative of the maximum profit we can make. Accordingly, if we can allocate bets to
the synthetic bookie such that we make money on any outcome, we know arbitrage is possible;
otherwise, arbitrage is not possible.

We simulate returns of a portfolio investing solely in arbitrage opportunities using a total of

$100 per match, spread across all odds. We use a uniform allocation method guaranteeing the

same profit regardless of the outcome in accordance with Vlastakis et al. (2009) with weights
P, "

= n : = nbZ 7 (2'2)

Zi:l P Zi:l b
placed on each " outcome over n possible outcomes, where P; is the probability of the i‘"
outcome implied by the bookie using the relationship

Wy

1
Pi:a

and b; is the bookie’s odds of the i*" outcome [23]. Note that each b; and P; comes from the
synthetic bookie, created using the maximum odds for each outcome 7 across all bookies. The
result of $100 bets placed in each arbitrage opportunities is shown in Figurebelow. Our returns
are consistent with those found in previously mentioned literature but provide additional insight
past 2013. Generally, as the frequency of football matches with arbitrage increases, the strategy’s
cumulative returns increases.

(2.3)



Profits from $100 bets invested in all available arbitrage opportunities from August 2005 to March 2021 in Regimes 1-3
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Figure 2: Arbitrage Bet Returns from 2006 - Present

From the 2005/2006 football season to present, the strategy returns total over $1,000 (excluding
basis) with a basis of $100 (1,000% return) across 1,525 matches. This averages to an approxi-
mate 0.65% return per game and 17% per year, which is extremely significant given the risk-free
nature of the bets. However, we admit that bookies typically charge fees and certain bookies
only allow bets to be placed in-person, which may decrease the availability and profitability of
our identified arbitrage opportunities.

2.3.1 Arbitrage availability across and within regimes

To better understand how our results of arbitrage availability relate to those of Vlastakis (0.5%
of all matches), Franck (4% of all matches), and Grant (25.6% of matches), we quantify the
effect of regime and time within regime on arbitrage availability using a logistic regression.
Vlastakis analyzed matches from pre-Regime 1, Franck analyzed matches from Regime 1, and
Grant analyzed matches from Regime 2. Prior to statistical analysis, we hypothesized Regime 2
would offer significantly more arbitrage opportunities based on the disparate results from Franck
and Grant. We fit a logistic regression of the form

PaT
ln(1b> =Bo+ B xR+ B2 R

- Parb (24)

+ B3 * Dur + 84 * Dur x Ry + 85 * Dur x R3

where P, indicates the probability of arbitrage, R; is an indicator variable for the i*" regime,
and Dur is the number of years after the beginning of the current regime. The results of our
logistic regression model are shown in Table

coef  std err z P> |z| [0.025 0.975]
Intercept -4.7031 0.086  -54.408 0.000 -4.873 -4.534

Ry 5.8437 0.089 65.940  0.000 5.670 6.017
Rs 4.4875 0.094 47.514  0.000 4.302 4.673
Dur 0.5772 0.016 35.669  0.000 0.546 0.609

Dur * R, -0.6810 0.017  -39.595 0.000 -0.715 -0.647
Dur * R3 -1.1250  0.033  -34.202 0.000 -1.189 -1.061

Table 3: Logistic Regression Results on Arbitrage Availability Indicator

The model has an overall p-value of < 0.001 and predicts arbitrage availability with 75% accuracy,
giving us confidence in its results. The model confirms our hypothesis: Regime 1 has significantly



less arbitrage than Regimes 2 and 3. This also confirms the results of Vlastakis, Franck, and
Grant, and helps explain the disparate results. Further, the duration in regime covariate sheds
additional light on arbitrage availability within each regime. Regime 1 has generally increasing
arbitrage availability, whereas Regimes 2 and 3 have generally decreasing arbitrage availability.
Further, the degree to which arbitrage is decreasing within Regime 3 is significantly more than
Regime 2, indicating that arbitrage is currently disappearing quickly.

2.3.2 Arbitrage availability in even and uneven matches

After understanding how arbitrage changes relating to regimes, we wanted to explore the rela-
tionship between arbitrage and team match-ups. We hypothesize that games where teams are
more evenly matched (taking into account home team advantages) will result in higher likelihood
of arbitrage. Intuitively, we expect that games that are more evenly matched are inherently less
predictable and thus bookies should have a tougher time setting correct odds. To test this, we
use the ELO-type team scores described in Section [2.1] to determine the expected probability
of the home and away team winnings, and define the win chance spread as the difference in
probabilities. We then create a model of the form

PaT’
In(—"2 ) = By+p1 % Ry+ Ba % Ry
1_Pa7'b

+ B3 * Spread + B4 x Spread x Ry + P5 * Spread x R

(2.5)

where P,,; indicates the probability of arbitrage, R; is an indicator variable for the i*" regime,
and Spread is the absolute difference between the implied probability of the home and away
team winning from the Bradley-Terry-like model described in The results of our logistic
regression model are shown in Table

coef  std err z P> |z| [0.025 0.975]

Intercept -2.3697  0.040  -59.271  0.000 -2.448 -2.291
Ry 2.9003 0.043 67.090  0.000 2.816 2.985
R3 0.6750 0.058 11.668  0.000 0.562 0.788
Spread 0.0096 0.001 7.345 0.000 0.007 0.012

Spread * R,  0.0039 0.001 2.758 0.006 0.001 0.007
Spread * R, 0.0226 0.002 12.536  0.000 0.019 0.026

Table 4: Win Chance Spread Model Results

The model has an overall p-value of < 0.001 and predicts arbitrage availability with 63% accuracy,
giving us confidence in its results. The results of the model contradict our hypothesis, but are
significant nonetheless. Rather, the data illustrates that as teams are less evenly matched (i.e.,
there is a clear expected winner), the likelihood of arbitrage increases. Further, in Regime 3,
this effect is even more extreme, indicating that arbitrage is presently more prevalent in uneven
matches than in the past.

2.3.3 Arbitrage availability resulting from bookie disagreement

Our final hypothesis related to arbitrage availability relates to bookie disagreement. We hy-
pothesize that if bookies disagree about the likelihood of an outcome, they are more likely to set
dissimilar odds, resulting in a higher probability the maximum of all odds gives an opportunity
for arbitrage. To test this hypothesis, we use the standard deviation of the implied probabilities
of each bookies’ outcomes as a proxy for general bookie disagreement. Figure [3| graphically
shows the change in bookie disagreement across regimes.



Bookie disagreement across regimes using implied odds standard deviation as a proxy
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Figure 3: Bookie Disagreement Across Regimes

We then create a logistic regression model to statistically validate our hypothesis of the form

PCLT
hl<—b> = Bo+ B1*x R+ B2 x R

1-— Parb (26)

4+ B3 SD + 4% SD * Ry 4+ 85 x SD % R3

where P, indicates the probability of arbitrage, R; is an indicator variable for the i*" regime,
and SD is the average standard deviation of probabilities across outcomes implied by bookie
odds. The results of this model are shown in Table Bl

coef std err z P> |z| [0.025 0.975]

Intercept -7.7338 0.129  -59.774  0.000 -7.987 -7.480
Regime[T.2] 3.4961 0.140 25.017  0.000 3.222 3.770
Regime|[T.3] -0.1030 0.205 -0.502  0.615 -0.505 0.299
BookieSD 453.4318  9.548 47.488  0.000  434.717 472.146

BookieSD:Regime[T.2]  10.9060 10.756 1.014 0.311  -10.176  31.988
BookieSD:Regime[T.3] 331.0699 19.528  16.954  0.000 292.796 369.344

Table 5: Bookie Disagreement Model Results

The model has an overall p-value of < 0.001 and predicts arbitrage availability with 83% accu-
racy, giving us confidence in its results. The model results confirm our hypothesis that arbitrage
is generally more available as bookies disagree. Further, this effect changes across regimes.
Regime 1 and Regime 2 seem to have a similar relationship between bookie disagreement and
prevalence of arbitrage, but the Regime 3 interaction demonstrates a much more extreme rela-
tionship; bookie disagreement in Regime 3 is more significant in arbitrage prevalence than it is
in Regimes 1 and 2.

We then hypothesize that increased bookie disagreement should result in more profitable arbi-
trage opportunities where arbitrage exists. We continue to use standard deviation of bookies’
implied probabilities as a proxy for bookie disagreement. However, instead of using the presence
of arbitrage as the dependent variable, we instead use the profit made from each arbitrage bet.
We create an ordinary least squares linear regression model of the form

profitary = Bo + B1* Ra + B2 * R
+ B3 % SD + B4 % SD x Ry + 85 * SD % R3

where profity, is the profit on a $100 bet spread across odds, R; is an indicator variable for the
it" regime, and SD is the average standard deviation of probabilities across outcomes implied

2.7)



by bookie odds. The results can be found in Table [6]

coef std err t P> |t| [0.025 0.975]
Intercept -1.3255 0.333 -3.978  0.000 -1.979 -0.672

Ry 0.4021 0.347 1.158  0.247  -0.279 1.083
R3 -0.0859 0.397  -0.217 0.829  -0.864 0.692
SD 143.6091  20.820 6.898  0.000 102.770 184.448

SD * R, -23.5546  22.068 -1.067 0.286 -66.842  19.733
SD * Rj 30.1560 25978  1.161 0.246 -20.801 81.113

Table 6: Bookie Disagreement OLS Model Results

The results of the model reveals that more disagreement among bookies results in higher arbitrage
profits. Unlike prevalence of arbitrage, this effect does not significantly change across regimes. As
evidenced by the significance of the regime intercepts, the degree of bookie disagreement appears
to explain the differing profits between Regimes 1, 2, and 3. Note that bookie disagreement does
not, however, explain the differing prevalence of arbitrage across regimes.

2.4 Inefficiency in the Player Contract Market

A first insight, and an important lens through which the following analysis must be interpreted,
is that football teams in the premier league are only as good as their budget allows. According
to a regression of total OD-ELO versus total team salary, we find squad pay explains 50% of
heterogeneity in team performance, so it is in the remaining half of variation that we explore
why some teams under-perform relative to their payroll while others transcend it.

Due to the physicality involved in the sport, we set out to investigate the role of age on value
(player performance divided by salary). We first created an ordinary least squares regression
model of the form

UPlayer = BO + 51 * TN eutral + 62 * TOffense

2.8
+53*Age+ﬂ4*Age*TNeutral +ﬁ5 *Age*TOffense ( )

where vpjqyer 1S a player’s individual skill (as measured by a third party) relative to their pay,
T; is a player’s position, and Age is a player’s age. The results of this regression are shown in
Table Across all players, we observe a clear negative trend between player value and age.
This effect is most extreme for forwards (Tofense), indicating that there may be a systematic
mispricing of forwards as their age increases.

However, it is possible that these older forwards may benefit their teams in ways not quantified
in the individual skill ratings data. It is plausible that, due to their greater experience, they are
better able to cooperate with other players on the field and thereby justify their unexpectedly
high price tags. To increase the strength of our evidence that older forwards are overpriced,
we would need to evaluate whether squads relying on older forwards tend to underperform
offensively relative to their total offensive spending. Now we make use of O-ELO estimates
relative to forward squad spending to estimate the value of a complete forward squad, and fit
an ordinary least square regression model of the form

VOffense = BO + 51 * Age (29)

where voffense forward squad value and Age is the squads average age. The results of this
regression are shown in Table Here, we again observe that as average age increases, value
(performance relative to cost) declines.



There are, of course, alternative explanations for these observations that prevent us from making
a definitive conclusion that these players are mispriced. Firstly, separate regression analyses
revealed that, in general, the relationship between individual player skill and player salary is
sublinear; in other words, clubs must pay a premium to hire generational talents (as opposed to
80" percentile players). Since these top players are disproportionately older, the nonlinearity
in skill versus salary could lead to false associations in our analysis of value versus age. Or,
the mispricing of older players could be driving the sublinearity of skill versus pay. With the
data provided, it is impossible to disentangle causality, but it is worth noting that the decline
in value with age becomes less significant (-0.5, p-value 0.01 versus -1.2; p-value < 0.001) after
adjusting for player salary, and the interaction effect with player category become nonsignificant
(in other words, loss of value is not worse for forwards than defencemen, after adjusting for
salary). Also, it should not go unmentioned that venerable stars may bring value to football
clubs off the pitch: in 2018, Italian club Juventus reportedly sold $60 million in jerseys overnight
after signing international superstar Cristiano Ronaldo [I5]. Ultimately, even OD-ELO cannot
capture the full richness of the football economy.

coef  std err t P> |t| [0.025 0.975]

Intercept 70.9906  6.828  10.397 0.000 57.593  84.388
TN eutral 25.9699 11.193  2.320  0.021  4.008  47.932
Tof femse 229115 11.324  2.023  0.043  0.692  45.131
Age -1.2606  0.263  -4.789  0.000 -1.777  -0.744

Age * Tneutrar  -1.2402 0.439 -2.823  0.0056 -2.102 -0.378
Age * Toffense -1.3638 0.452 -3.017  0.003 -2.251 -0.477

Table 7: Effect of Player Age on Value Regression Results

coef std err t P> |t| [0.025 0.975]

Intercept 3259.6622 793.990 4.105 0.001  1591.551 4927.773
Age -113.2894  30.674 -3.693 0.002 -177.734  -48.845

Table 8: Effect of Age on Squad Offensive Value

2.5 Connecting the Dots: Relating Match Outcomes to Performance
of Financial Assets

Having identified a prolonged period of exploitable inefficiencies in the betting market, we set
out to explore a hypothesis of stock returns of publicly listed football clubs being affected by
unexpected match outcomes. We investigate if having an edge in predicting a match outcome
can be translated into superior returns for investors and whether option markets can be relied
upon in providing a better implied distribution of match results.

Previous research on the topic produced somewhat mixed results: while earlier papers written
in the 2000s generally discover statistically significant market reactions to unexpected match
outcomes [3], more recent studies conclude that such variables as the number of spectators and
transfers of players (that are both considered proxies for the financial performance of a club)
explain most of the variation of stock returns [12]. Some attempts have been made to relate
unexpected sporting results to periods of increased volatility [2] but none of them incorporate
option market data, to the best of our knowledge. It is customary in the literature to use a
cross-section of returns across all publicly traded football clubs to establish the strength of the
connection between sporting events and financial markets. We would however argue that cross-
sectional results do not offer any actionable conclusions for investors as averaging responses of
different stocks across matches held over several years can not be translated into a viable trad-
ing strategy. Instead, we only analyze the shares of the largest publicly traded football club,
Manchester United (ticker: MANU, re-listed on NYSE in 2012), as they provide sufficient market
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depth across betting, stock and option markets. While our analysis is much narrower in scope,
we attempt to offer deeper insights into the relationship between the three market segments.
Liquidity is an important factor as any discovered market inefficiency can not be exploited in
the absence of sufficient market depth. Having analyzed stock returns of other football clubs,
most notably Juventus and AS Roma, we admit that their distributions exhibit even heavier
tails, which suggests more potential trading opportunities on paper, but likely less real use for
any institutional investor, particularly given how shallow their option markets are.

We begin by estimating a CAPM regression of daily MANU returns on market returns in order
to separate market-wide shocks from idiosyncratic shocks related to MANU’s performance (see
Equation . Despite being listed on NYSE, MANU doesn’t exhibit strong correlation with
the broader US stock market and is more attuned to the changes in the FTSE Index. We convert
the latter into USD to ensure that we deal with dollar returns in both cases.

Ryanu = a+ BRprse + € (2.10)

This simple exercise already uncovers several interesting properties of MANU returns. The R?
of just 7.7% indicates that only a small portion of variation of returns can be attributed to the
overall market performance. Yet, 3 = 0.447 has a standard error of only 0.033, pointing to high
statistical significance of the relationship. This is somewhat contrary to our expectation of pro-
cyclical football clubs’ stocks being high-beta. Studying the distribution of residuals also reveals
that it has excess kurtosis of 5.5 and that the proportion of 3-sigma and larger events exceeds
1.15% of the sample, comparing to 0.27% for the Normal distribution. While high peakedness
of the distribution does not offer any actionable opportunities for market participants, the fat
tails do and we are going to pursue this idea further.

CAPM Regression with R? = 0.077 Distribution of Residuals
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Figure 4: CAPM Regression and Distribution of Residuals

Given that more than 77% of all matches in our 2012-2021 sample was played on weekend, and in
line with previous literature, we focus on excess stock returns on trading days following matches
and present aggregated results in Table[9] The overall directions of the reactions are in line with
our intuitions, except possibly in the case of a win in an away match, and with previous research
findings which showed that the stock market is much more sensitive to defeats and draws than
to wins [20]. In general, while the sample’s excess kurtosis increases to 8.55, indicating even
fatter tails, otherwise the sample of residuals on trading days following sporting event matches
the overall sample distribution almost percentile-by-percentile. That and the magnitudes of
the standard deviations make us reject the hypothesis of unexpected match results offering any
specific trading opportunities.
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Home Away
Mean St. Dev. Mean  St. Dev.
Win 0.21% 1.62%  -0.14% 2.13%
Draw  -0.20% 1.51%  -0.32% 1.19%
Defeat -0.38% 1.55%  -0.10% 1.55%

Table 9: Excess Return on Trading Days Following Matches

One of the reasons behind the high dispersion of excess returns following similar events might
lie in misalignment between investors’ and bettors’ expectations regarding match outcomes [4].
While it is not straightforward to infer investors’ expectations about match outcomes, we assume
that the higher uncertainty about them would be reflected in higher volatility of stock returns.
On the other hand, bettors’ expectations can be inferred directly from the betting odds that are
calibrated against both realized probabilities and bettors’ demand. We first plot rolling realized
probabilities of winning and losing a match against the probabilities implied by the betting odds
in Figure p| In our view, this dynamic suggests that while in general implied probabilities are
well calibrated, there are periods spanning several seasons when the uncertainty about match
outcomes is very high. To combine these metrics into one, we proxy bettor’s uncertainty by
Shannon’s entropy in Equation and plot it in Figure [6]

H(X) = =Y pla) logp(a:) (211)
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Figure 5: Implied vs. Realized Probabilities of Match Outcomes

Here, again our hypothesis is not confirmed by the data: while we clearly observe two different
entropy regimes (a period of rising uncertainty in 2014-2016 followed by a sharp decrease in
2017 and an increase in 2018-2021), MANU’s idiosyncratic volatility, defined as rolling standard
deviation of CAPM residuals, does not exhibit any visible regime change in 2012-2021. Our
results so far indicate that whatever edge an investor might have in predicting match outcomes,
it is unlikely to result in any sustainable trading strategy. Still, we believe that unusually heavy
tails of the distribution of residuals might be exploitable.
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Idiosyncratic Volatility Entropy Derived from Betting Odds
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Figure 6: Idiosyncratic Volatility Across Two Entropy Regimes

In order to test whether option markets price in the extreme volatility in both tails, we employ
the seminal Shimko methodology of inferring a risk-neutral density of stock prices at maturity
of the options from observed option prices [21]. We use option prices for 200-day call and put
options on MANU as of 30 November 2020 in order to illustrate the method. All options expire
on 18 June 2021 and thus should capture a wide range of outcomes until the end of 2020/2021
season. To ensure that the resulting density is continuous, we first need to estimate an implied
volatility curve by using Weighted Least Squares to fit a quadratic polynomial from Equation
2.12, The next step is to use the relationship between the risk-neutral density ¢;(x) and the
second derivative of call option price with respect to strike from Equation We present the
resulting implied volatility curve and the risk-neutral density in Figure [7]

6(K,t) = a(t)K? + b(t)K + c(t) (2.12)
0%c(K,0(K))
_rt )
q(z) =e 9K (2.13)
K=z
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Figure 7: Implied Volatility Curve and Inferred Risk-Neutral Density

The inferred density is non-parametric in nature, can not be converted into a corresponding
normal distribution by taking a logarithm and is only compared to log-normal distribution be-
cause the latter is the benchmark model for stock prices in quantitative finance. We still believe
that examining its properties is illuminating because it exhibits a negative skew and an excess
kurtosis of only 0.53. Furthermore, it is clear that a parabola does not provide a good fit for
the observed structure of implied volatility, underestimating volatility at lower strikes and over-
estimating volatility at higher strikes. The implication is that the risk-neutral density should
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have had an even heavier left tail and a much smaller right tail. This leads us to conclude
that the asymmetry in option pricing commonly referred to as “volatility smile” does not fully
capture the tendency of MANU to jump upwards as wildly as downwards. While the premise
of volatility smile is based on empirical observation that stocks generally fall faster than they
increase in price, this is not the case with MANU, as we have seen earlier in the report.

In our view, this inefficiency can be exploited by a simple risk reversal strategy that would
entail a delta-neutral combination of bought high-strike calls and sold low-strike puts, with the
addition of dynamic delta-hedging whenever the position moves out of balance. At current
prices, in order to construct this portfolio with no initial investment, an investor would only
need to sell low-strike puts with a fifth of the notional of the bought calls, which further limits
downside potential of the strategy. Limitations on the availability of public data on historical
option prices do not allow us to backtest this strategy but we believe that these findings warrant
further research into the topic.
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3 Suggestions for Future Research

With the data we have already collected and cleaned, and using the robust methods developed
in the above analyses, there are several lines of research we could pursue moving forward. A few
of the most promising are:

e We have determined that older players, particularly forwards, are often overpaid relative
to their skill rating and even their in-game performance. However, it is known that in
some instances [I5], esteemed star players can contribute to team revenue through buoyed
ticket and merchandise sales. Can we quantify the financial impact of ‘venerable elder’
star players beyond their performance on the pitch?

e To determine whether there is an interaction effect between age and match time in deter-
mining team performance. Do younger teams underperform/older teams outperform their
expected skill level in daytime matches?

e We have clearly identified the existence of small biases among bookmakers in their odds
setting process. However, it is not clear that these biases are substantial enough to allow an
unbiased predictor to win money against bookmakers after margin is taken into account.
Though the likelihood of opportunities increases if we are allowed to consider dynamic
evolution of price changes. An iterative application of our model could be backtested
with a optimal (Kelly Criterion) bet placement strategy to investigate whether there are
financially rewarding opportunities in the football betting market.

e A more robust method [I8] of recovering risk-neutral density from option prices can be
applied to better quantify the degree to which the right tail of the distribution of football
clubs’ stock returns is underpriced in the option market.
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A Supplementary

Data Sources

Source

Description

Football-Data

Historical match outcomes across UK football divisions in 2005-2021
Closing betting odds for each match for up to 11 bookkeepers

EPL Team Payroll Tracker|

Premier League player-level and club-level salary data

University of Glasgow|

Shirt sponsorship by gambling companies in Premier League

Dimensions| Number of publications on sports betting arbitrage over time
Yahoo Finance API Historical stock prices
Bloomberg Historical option prices
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